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Frequent pattern mining is an important data mining problem with many broad applications. Most studies in
this field use support (frequency) to measure the popularity of a pattern, namely the fraction of transactions
or sequences that include the pattern in a data set. In this study, we introduce a new interesting measure,
namely occupancy, to measure the completeness of a pattern in its supporting transactions or sequences. This
is motivated by some real-world pattern recommendation applications in which an interesting pattern should
not only be frequent, but also occupies a large portion of its supporting transactions or sequences. With the
definition of occupancy we call a pattern dominant if its occupancy value is above a user-specified threshold.
Then, our task is to identify the qualified patterns which are both dominant and frequent. Also, we formulate
the problem of mining top-k qualified patterns, that is, finding k qualified patterns with maximum values
on a user-defined function of support and occupancy, for example, weighted sum of support and occupancy.
The challenge to these tasks is that the value of occupancy does not change monotonically when more items
are appended to a given pattern. Therefore, we propose a general algorithm called DOFRA (DOminant
and FRequent pattern mining Algorithm) for mining these qualified patterns, which explores the upper
bound properties on occupancy to drastically reduce the search process. Finally, we show the effectiveness
of DOFRA in two real-world applications and also demonstrate the efficiency of DOFRA on several real and
large synthetic datasets.
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1. INTRODUCTION

Frequent pattern mining [Agrawal et al. 1993] is an important data mining problem
in many data mining tasks, such as association-rule-based classification [She et al.
2003] and clustering [Aggarwal et al. 2007]. Most of studies in this field use support
(frequency) to measure a pattern’s popularity, namely the fraction of transactions
orsequences that include the pattern in a database. Here, the frequent patterns can
be itemsets or subsequences that appear in a data set with frequency no less than a
user-specified threshold [Han et al. 2007]. In this article, we introduce a new concept
occupancy to measure a pattern’s completeness, namely the degree to which the pattern
occupies its supporting transactions or sequences. This new measure is motivated by
some real-world applications of pattern recommendation which not only require that
an interesting pattern should be frequent, but also prefer the pattern which occupies
a large portion of its supporting transactions or sequences. Next, we will give two of
such applications on a transaction database and a sequence database, respectively.

The first motivating application on a transaction database is the print-area recom-
mendation for Web pages [Tang et al. 2012]. Users may have the experience that the
printout generated by a Web browser’s print function is far from satisfactory, since it
usually contains many irrelevant contents (e.g., advertisements, navigation menu, and
related links). To tackle this problem, HP designs a tool named Smart Print1, which
provides a user-friendly interface so that a user can easily select her interested print
areas for a Web page. Figure 1 gives an example for printing the biography of HP
CEO in Smart Print. In this Web page, the user selected three print-areas which are
highlighted in white rectangles. A lot of such selections for Web pages are stored in
print logs with user content. If we view each content clip (a selected content area) as
an item, then all the selected clips by a user in a given Web page form a transaction of
items and the print log data from all users form a transaction database. Based on this
transaction database, our task is to recommend an itemset (i.e., a set of content clips)
in a given Web page to users. In this task, the recommended itemset should not only
occur frequently to reflect the interests of most users, but also occupy a large portion of
its supporting transactions to ensure the completeness of the itemset so that the user
would not feel that the recommendation is missing too much relevant content.

Another motivating application on a sequence database is the travel landscapes rec-
ommendation [Liu et al. 2011]. Assume that we have the travel package consumed logs
from the tourists in a travel company. Here, a travel package means the comprehensive
services provided by a travel company for the tourists based on their travel preference,
which usually consists of many landscapes by a spatial or temporal order. Figure 2
gives an example document for a travel package named “Niagara Falls Discovery” from
the STA Travel2. In this document, the words in red are the landscapes appearing
in a sequential order. If we view each landscape as an item, the package purchased
by a tourist form a sequence of items. Then, the purchase log data from all tourists

1A Web browser plug-in, www.hp.com/go/smartprint.
2http://www.statravel.com/.
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Fig. 1. An example for printing in Smart Print.

Fig. 2. An example of a travel package document.

form a sequence database. Our task is to recommend a sequence of landscapes to a
given tourist based on this sequence database. Intuitively, the recommended sequence
should occur frequently to reflect the preference of most tourists. More importantly,
the recommended sequence should be as complete as possible so that the user would
not miss too much interesting landscapes.

The commonality of the previous two applications is that the items in each transac-
tion or sequence work as a whole for a task. To be specific, the task of print-area recom-
mendation is to recommend a set of content clips in a given Web page to users, while
that of travel-landscape recommendation is to recommend a sequence of landscapes to
a given tourist. In these applications, the recommendation for the tasks should be both
precise and complete. Intuitively, the support of a recommended pattern correlates to
the recommendation precision while its occupancy is related to the recommendation
recall. Thus, occupancy become another pattern interestingness measure which is an
indispensable complement to support.

With the definition of occupancy, we call a pattern dominant if its occupancy is above
a user-specified minimal threshold. Then, our task is to identify the qualified patterns
which are both dominant and frequent. Also, we formulate the problem of mining
top-k qualified patterns, that is, finding k qualified patterns with maximum values on
a user-defined function of support and occupancy (e.g., weighted sum of support and
occupancy). The challenge to these tasks is that the property of occupancy is neither
monotone nor anti-monotone. In other words, the value of occupancy does not increase
or decrease monotonically when more items are appended to a given pattern.

To address this challenge, in our preliminary work [Tang et al. 2012], we pro-
posed an efficient algorithm, named DOFIA (DOminant and Frequent Itemset mining
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Algorithm), which incorporates occupancy into frequent itemset mining for high qual-
ity itemset recommendation. DOFIA explores the occupancy upper bound properties
to drastically reduce the search process, thus can increase the efficiency of mining.
However, DOFIA can only be applied to transaction databases for itemset mining.

In this article, we extend the concept of occupancy into sequential pattern mining
and propose an efficient algorithm called DOFRA for high quality sequential pattern
recommendation. For the scenarios of sequential pattern mining, we propose two upper
bounds on occupancy for any given itemset X and its supersets (in the traversal tree).
The first bound is efficient and the second one is the tightest with certain input con-
straint. Also, we show the technique that achieves the balance between the two upper
bounds to improve the overall performance. Moreover, we show that these techniques
can be also applied to weighted occupancy, in which we consider the weights of items
in calculating the pattern occupancy.

Specifically, we propose two occupancy definitions, namely harmonic occupancy and
arithmetic occupancy, in which different average functions, namely harmonic average
and arithmetic average, are used respectively. In our preliminary work [Tang et al.
2012], we focused on harmonic occupancy. In case that in some applications the arith-
metic average is required, we focus on arithmetic occupancy in this study for technical
complement to our previous work [Tang et al. 2012]. In addition, the link between occu-
pancy and closed patterns has been investigated. To be specific, the top qualified pattern
must be closed one, and thus DOFRA can be enhanced by exploiting the properties of
closed patterns to further prune the search space. Finally, we show the effectiveness
of DOFRA in the two mentioned applications, namely the print-area recommendation
and the travel-landscape recommendation. And, we also demonstrate the efficiency of
DOFRA on several real and large synthetic datasets.

Overview: The remainder of the article is organized as follows. We first give the
problem formulation in Section 2 and then give the overview of the proposed algorithm
DOFRA in Section 3. The details of DOFRA, especially on how to calculate the upper
bounds on occupancy and quality, are discussed in Section 4. We report the empirical re-
sults to show the effectiveness and efficiency of DOFRA in Section 5 and 6, respectively.
We present the related works in Section 7 and conclude the article in Section 8.

2. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first give some preliminaries in pattern mining on a sequence
database and propose the definitions of occupancy. Then, we formulate the qualified
pattern mining problem which considers both support and occupancy.

2.1. Definitions and Notations

Let I be the complete set of distinct items. A sequence database is a set of sequences, in
which each sequence is an ordered list of events which is denoted as e1e2 . . . em. If each
event in a given sequence is an item, we call it single-itemset sequence. Otherwise, we
call it multiple-itemset sequence in which each event is an itemset. In this article, we
only focus on single-itemset sequences since it represents one of the most important and
popular type of sequences, such as protein sequences, DNA strings, Web click streams
and the travel-package sequences introduced in this article.

We call a subsequence Sa = a1a2 . . . am contains another subsequence Sb = b1b2 . . . bn
if there exist integers 1 ≤ i1 < i2 < · · · < in ≤ m such that ai1 = b1, ai2 = b2, . . . , ain = bn
(Note that an item can occur multiple times in different events of a sequence). For
example, suppose S1 = abcdb, S2 = acd and S3 = adca, then S1 contains S2, but S1
does not contain S3.

Without loss of generality, we use the pattern P to represent a subsequence and the
database D to represent a sequence database. The number of items in P, denoted by
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Table I. An Example of
Sequence Database

Sid Sequence Length
S1 a b c d e g 6
S2 a b c f 4
S3 a b c 3
S4 a b c 3
S5 a b e h i 5

|P|, is called the length of P and a pattern with a length l is called a l-pattern. The
sequences in D that contain a pattern P are the supporting sequences of P, denoted
as DP . The frequency of a pattern P in D is defined as freq(P) = |DP |. The support of
a pattern P is the percentage of sequences in D that containing P which is defined as
σ (P) = freq(P)/|D|. For a given minimum support threshold α (0 < α ≤ 1), a pattern P
is said to be frequent if σ (P) ≥ α.

Table I gives an example of sequence database D. This database has nine unique
items (a, b, c, d, e, f, g, h, i), five input sequences (|D| = 5). Suppose P = abc, there are
four sequences (S1, S2, S3, S4) containing this pattern, thus f req(P) = 4 and σ (P) = 4

5 .
P is frequent if α = 0.5.

In the motivating applications in Section 1, the pattern we intend to find should
occupy a large portion of its supporting sequences so that the recommended pattern
contains most of interesting items without missing anything. The occupancy can be
calculated as follows. For a pattern P, we can identify all its supporting sequences DP .
For each sequence S ∈ DP , we calculate the ratio of |P|

|S| to measure the completeness
of P in S. For example, the ratio of P = abc in S1 shown in Table I is 3/6. We then
aggregate these ratios to compute a single value of occupancy for P in its supporting
sequences.

Definition 2.1 (Occupancy). The occupancy of a pattern P is defined as

φ(P) = AVG
({ |P|

|S| : S ∈ DP

})
,

where AVG() is an average function of all the values in the set.

Different average functions, arithmetic average and harmonic average [Haff 1979]
can be used here. Then, we have the following two occupancy definitions.

Definition 2.2 (Harmonic occupancy). The harmonic occupancy is defined as

φH(P) = AVGH

({ |P|
|S| : S ∈ DP

})
= |DP ||P|∑

S∈DP
|S| ,

where AVGH(X) = |X|∑
x∈X

1
x

is the harmonic average of a set of numbers in X.

Definition 2.3 (Arithmetic occupancy). The arithmetic occupancy is defined as

φA(P) = AVGA

({ |P|
|S| : S ∈ DP

})
= 1

|DP |
∑

S∈DP

|P|
|S| ,

where AVGA(X) =
∑

x∈X x
|X| is the arithmetic average of a set of numbers in X.

Let us take the database in Table I as an example. We calculate the occupancy of the
following three patterns P1 = ab, P2 = abc, and P3 = abcd. The supporting sequences
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of P1, P2, and P3 are {S1, S2, S3, S4, S5}, {S1, S2, S3, S4}, and {S1} respectively. Then,

φH(P1) = 5×2
6+4+3+3+5 ≈ 0.48

φH(P2) = 4×3
6+4+3+3 = 0.75

φH(P3) = 4
6 ≈ 0.67.

φA(P1) = 2
6 + 2

4 + 2
3 + 2

3 + 2
5

5 ≈ 0.51

φA(P2) = 3
6 + 3

4 + 3
3 + 3

3
4 ≈ 0.81

φA(P3) = 4
6 ≈ 0.67

It is clear that the occupancy of a pattern P is the average ratio of the occurrences
of the items in P to the number of the items in its supporting sequence. The high value
of the occupancy indicates that besides the items in P there are only a small number of
items left inside the supporting sequence of P. Also, it is easy to check that the value
of occupancy does not increase (see φ(P2) and φ(P3)) or decrease monotonically (see
φ(P1) and φ(P2)) when more items are appended to a given pattern. In our preliminary
work [Tang et al. 2012], we focused on harmonic occupancy. In case that in some
applications the arithmetic average is required, we focus on arithmetic occupancy in
this study for technical complement to our previous work [Tang et al. 2012]. Without
loss of generality, in the following we use φ(P) to represent φA(P).

Note that the theoretically comparison of arithmetic occupancy and harmonic occu-
pancy is actually equal to compare the two average functions (i.e., arithmetic average
and harmonic average) for different applications. In fact, the arithmetic average is best
used in situations in which the data are not skewed (no extreme outliers). Accordingly,
the harmonic average is best to use when there is: a large population in which the
majority of the values are distributed uniformly but where there are a few outliers
with significantly higher values [Haff 1979].

Definition 2.4 (Dominant Pattern). For a given minimum occupancy threshold β
(0 < β ≤ 1), the pattern P is said to be dominant if φ(P) ≥ β.

With the definition of support and occupancy, we can measure the quality of a pattern
by combining these two factors.

Definition 2.5 (Quality). The quality (value) of a pattern P is defined as q(P) =
Q(σ (P), φ(P)), where Q(σ (P), φ(P)) is any function, which maps the support and occu-
pancy to a real value.

In this article, we use the weighted sum function, that is, q(P) = σ (P) + λφ(P),
where the weight λ (0 ≤ λ < +∞) is a user defined parameter to capture the relative
importance of support and occupancy. It is worth mentioning that any other functions,
such as the harmonic average (similar to the F1 score) and the sum of logarithms
(similar to block size proposed in Gade et al. [2004]) can be used to combine the two
values of support and occupancy. Later, we will see that the proposed techniques can be
applied to any function Q(σ (P), φ(P)), which is monotonically increasing with respect
to φ(P).

2.2. Problem Formulation

Mining Qualified Patterns. Given the minimal support threshold α and the minimal
occupancy threshold β, the task is to find all the qualified patterns (which are both
frequent and dominant) in a database D.

In addition, among all the qualified patterns we also aim to find the pattern with the
maximal quality value for recommendation. Formally, it can be formulated as follows.
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Mining Top Qualified Pattern. The top qualified pattern P is defined as the
qualified pattern with the maximal quality value:

arg max
P:σ (P)≥α,φ(P)≥β

{σ (P) + λφ(P)}. (1)

Later, in Section 3 we will show that the top qualified pattern must be closed one, thus
the proposed algorithm DOFRA for top qualified pattern mining can be enhanced by
using the pruning methods for closed patterns for efficient mining.

There are three parameters in the formulation of mining top qualified pattern,
namely α, β, λ. According to α, β, if there is no pattern that is both frequent and dom-
inant, the top qualified pattern does not exist and a valid algorithm will not output
any result since no non-empty pattern exists that meets the quality requirements. The
parameter λ is a user defined parameter to capture the relative importance of support
and occupancy.

In the remaining of the article, we will primarily focus on mining top (i.e., k = 1)
qualified pattern. We then show that the solution to top qualified pattern mining can
be easily extended to solve the problem of identifying top-k qualified patterns for k > 1.

2.3. Discussion

One may think that dominant patterns with high occupancy usually contain a large
number of items and thus methods based on Maximal Frequent Pattern mining may
be adopted for identifying top-k qualified patterns. (A pattern P is a maximal frequent
pattern if P is frequent and no super-pattern of P is frequent [Burdick et al. 2001]).
Given a minimal support threshold we can get multiple maximal frequent patterns,
among them we can select the one with the largest number of items as the top qualified
pattern. Is this a valid algorithm for mining top qualified pattern? The answer is “no”
for the following reasons.

First, in methods based on mining maximal frequent patterns, the number of items
in a pattern is used as a measure for pattern selection. Compared with the definition of
occupancy, this is actually the absolute size of a pattern while occupancy is the relative
size of a pattern which is the average ratio of the size of the pattern to the number
of items in its supporting sequence. Among all the frequent patterns, the support of
maximal frequent pattern selected is usually lower than that of our proposed method,
thus its precision is lower than the proposed method. Secondly, note that there may
exist many different maximal patterns with the same largest length, in which it is
difficult to choose one for recommendation by only considering the absolute size of a
pattern. In other words, choosing different patterns randomly may occur very different
final performance. Lastly, in mining top qualified pattern a weighted sum of both
support and occupancy is used as the interestingness measure, which may lead to
better recommendation performance compared to the patterns selected by methods
based on maximal frequent patterns. The experimental results in Section 5 further
validate our analysis here.

In the next section we will present our general algorithm, named DOFRA, for the
top qualified pattern mining problem.

3. OVERVIEW OF DOFRA

The straightforward solution to this pattern mining problem is to first generate all
the frequent patterns, calculate the occupancy and quality value for each pattern,
and then select the qualified pattern with maximum quality value. However, it is time-
consuming to calculate the occupancy value for each frequent pattern. In this section,
we will show how the properties on occupancy and quality measures can be injected
deeply into the search process and greatly prune the search space. Before going further,
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Fig. 3. Construction of prefix-projected database tree for the database shown in Table I.

we first introduce a typical sequential pattern mining algorithm which is related to our
work.

3.1. Basic Idea

Pattern mining algorithms on a sequence database usually adopt PrefixSpan [Pei et al.
2001] to find the frequent patterns. PrefixSpan works in a divide-and-conquer way.
After the first scan of the database, the set of length-1 frequent patterns is derived.
Each pattern is treated as a prefix and the complete set of frequent patterns can be
partitioned into different subsets according to different prefixes. To mine the subsets
of frequent patterns, corresponding projected databases are constructed and mined
recursively.

Figure 3 shows a prefix-projected database tree constructed by a revised PrefixSpan3

on the database shown in Table I. Each node in this tree is a prefix (pattern) projected
database which contains three parts: the supporting sequence Sid, the appearance
PS (i.e., prefix sequence) of this pattern and the remaining sequence SS (i.e., suffix
sequence) behind this pattern in the supporting sequence. For bc-projected database
in Figure 3 as an example, the prefix sequence and suffix sequence of bc in S1 is bc
and deg, respectively. After scanning the initial database, we get length-1 frequent
patterns a/b/c/e and each pattern can be treated as a prefix and its corresponding
projected database is then constructed. Next, we recursively consider these projected
databases until no frequent items exist in the suffix sequences. For example, in the
b-projected database in Figure 3, the items c and e are frequent in the suffix sequences,
thus b-projected database can be further expanded to bc- and be-projected databases.
Because there are no frequent items in the bc’s supporting suffix sequences, thus this
projected database ceased to expand. The traversal in this database tree is to find all
frequent patterns.

Next we will show our solution exploring the properties on occupancy and quality
to further prune the search space in this tree. Specifically, given a pattern P we can

3Note that the step I-extension [Ayres et al. 2002] is removed in PrefixSpan for frequent single-itemset
sequences enumeration.
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estimate the upper bounds of occupancy and quality for all frequent patterns in the
subtree rooted at P. In other words, the occupancy and quality of any pattern in the
given subtree will be no bigger than its upper bounds, respectively. If the upper bound
on occupancy is smaller than the minimal occupancy threshold β, this subtree should be
pruned. Also, we can maintain the current biggest quality value in the search process
so far, denoted by q∗, and all subtrees with the quality upper bounds less than q∗ should
be pruned.

Take the subtree rooted at pattern b in Figure 3 as an example. When the node b is
searched, we can give an upper bound of the quality for all frequent patterns in this
subtree (including b, bc and be) and this upper bound is 2.05 (the fast computation for
this quality upper bound is shown in Section 4). Assume that we have already found abc
is the node with the highest quality 2.42 so far, which is bigger than the upper bound
for the subtree rooted at b. Thus, the subtree rooted at b should be pruned. The dashed
line in Figure 3 is the cut line for pruning the search space for mining top qualified
pattern (α = 0.4, β = 0.5, and λ = 2.). In this example, the search space when using
only the frequency constraint for pruning has 12 projected databases while the search
space of DOFRA has only 4 projected databases. The search space is greatly reduced
by pruning using the upper bounds of occupancy and quality. To further reduce the
search space, we have the following property.

PROPERTY 1 (CLOSED PATTERN MAXIMIZES OCCUPANCY). A pattern P is closed if P is frequent
and there exists no proper super-pattern of P with the same support. All sub-patterns
of the closed pattern P with the same support form an equivalence class of P. Among
this equivalence class, the closed pattern P must be the one with maximal occupancy
value.

Given the toy example in Table I, pattern abc is a closed pattern with support 0.8
(suppose α = 0.5). The equivalence class of abc is {c, bc, abc}. Their occupancy values
are 0.27, 0.54, and 0.81, respectively. Among this equivalence class, abc has the biggest
occupancy value. According to the Property 1, the top qualified pattern must be closed.
In other words, any nonclosed pattern must not be the top qualified one. In other
words, if there are no closed patterns in the subtree rooted at P, this subtree should
be pruned. Thus, we adopt the effective technique of BackScan search space pruning
proposed in BIDE [Wang and Han 2004] for the subtree closeness checking (readers
can refer [Wang and Han 2004] for more details).

3.2. The Algorithm

Algorithm 1 shows the pattern mining process of a Depth-First-Search (DFS) with the
pruning techniques based on the framework shown in Figure 3. Note that since each
node in the search tree uniquely corresponds to a pattern, we use the terms “node” and
“pattern” interchangeably here. At current node currNode, we first compare its quality
value with the top qualified node searched so far. If the quality value of currNode
is larger than that of top qualified node (line 1), we use currNode to replace the top
qualified node (line 2). Then, we check any child, denoted by node, of currNode. If the
support of node is smaller than minimal support threshold α (line 5), or its occupancy
upper bound is smaller than minimal occupancy threshold β (line 7), or its quality
upper bound is smaller than the current maximal quality value (line 9) or there are
no closed patterns in the subtree rooted at node (line 11), then node should be pruned.
Otherwise, we recursively check node (line 12).

Based on the previous algorithm, we can easily extend it to solve the problem of
identifying top-k qualified (closed) patterns. Specifically, by replacing bestNode in the
input, a usual way is to use heap H with size k to maintain the top-k qualified nodes
searched so far [Han et al. 2002; Wu et al. 2012]. In line 1, the bestNode.quality should

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 2, Article 14, Publication date: October 2015.



14:10 L. Zhang et al.

Table II. The Supporting Sequences of b in Table I

Sid S PS SS |S| |PS| |SS|
S1 a b c d e g b c d e g 6 1 4
S2 a b c f b c f 4 1 2
S3 a b c b c 3 1 1
S4 a b c b c 3 1 1
S5 a b e f i b e f i 5 1 3

SL PSL SSL

ALGORITHM 1: DOFRA
Input: the current Node currNode obtained from the prefix-projected database tree like

Figure 3, the top qualified pattern searched so far: bestNode.
1 if currNode.quality ≥ bestNode.quality then
2 bestNode ← currNode;

3 for node ∈ currNode.children do
4 supp ← node.support;
5 if (supp ≥ α) then
6 occu ← the occupancy bound on the subtree rooted at node;
7 if (occu ≥ β) then
8 qual ← the quality bound on the subtree rooted at node;
9 if (qual ≥ bestNode.quality) then

10 clos ← true if there exists closed patterns in the subtree rooted at node and
vice verse;

11 if (clos == true) then
12 DOFRA (node, bestNode);

be replaced by Hk.quality (Hk is the k-th node with minimal quality value in H), then
bestNode in line 2 should be replaced by Hk. At last, we use Hk.quality to replace
bestNode.quality in line 9.

So far we have omitted the most challenging part in the algorithm: how to compute
the upper bounds on occupancy and quality (line 6 and line 8). Since the estimation of
these upper bounds is at the cost of extra computing, they should be computed very
efficiently. Meanwhile, to prune the search space as much as possible, it is required
that these upper bounds should be as tight as possible. In the next section, we will
describe its details.

4. THE UPPER BOUNDS OF OCCUPANCY AND QUALITY

In this section, we first give an overview of the upper bounds estimation. Then we
show how to efficiently compute the upper bounds of the arithmetic occupancy and its
quality. For more details about harmonic occupancy and its upper bounds, readers can
refer to our preliminary work [Tang et al. 2012].

4.1. The Overview of the Upper Bound

For any subtree, let P be the root pattern (node) and DP be the supporting sequences
of P. For any sequence S in DP , the Prefix Sequence (PS for short) of P in S is the
appearance of P in S while its Suffix Sequence (SS for short) is the remaining sequence
following P in S. For the supporting sequences of pattern b shown in Table II, the prefix
sequence and suffix sequence of b in S1 is b and cdeg, respectively. Table II shows all
prefix sequences and suffix sequences of b in its supporting sequences. To compute the
upper bounds, we need the following notions with respect to P.
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Table III. Notations used in Section 4

P The root pattern for a subtree
P ′ Any pattern in the subtree of P
DP The supporting sequences of P in D
freqmin The minimal frequency threshold (
α · |D|�)
u u often denotes |DP′ |
v v often denotes |P ′| − |P|
PS The prefix sequence of P in S
SS The suffix sequence of P in S
PSL Prefix sequence length vector, PSL[i] = |PSi |
SSL Suffix sequence length vector, SSL[i] = |SSi |
SL Sequence length vector, SL[i] = |Si |
V↑/↓ vector V sorted by ascending/descending order

Definition 4.1 (SL & PSL & SSL). The Sequence Length vector of P, denoted as SL,
is used to record the number of items in its supporting sequence S (S ∈ DP). The Prefix
Sequence Length vector of P, denoted as PSL, is used to record the number of items in
each prefix sequence in S (S ∈ DP). The Suffix Sequence Length vector of P, denoted
as SSL, is used to record the number of items in each suffix sequence in S (S ∈ DP).

SL, PSL, and SSL are three vectors. Their index refers to the sequence number. As
shown in Table II, PSL[5] = 1, SSL[5] = 3, and SL[5] = 5. Note that PSL[i] + SSL[i] ≤
SL[i].

In the following, we will use u to denote the frequency of a pattern P ′(|DP ′ | = u)
in the subtree rooted at P, and v to denote extension length of P ′ with respect to P
(|P ′| − |P| = v). For example, suppose P = b and P ′ = bcdef , the extension length of P ′
with respect to P is 4. In addition, we will need to frequently sort the values in a vector.
For a vector V, V↓(V↑) is the vector obtained by sorting V in the descending (ascending)
order of the values. Thus, V↓(i) is the ith largest value in V. For the SSL in Table II as
an example, SSL↓ = 〈4, 3, 2, 1, 1〉 and SSL↓[2] = 3. The notations used in this section
are summarized in Table III.

We aim to estimate the occupancy and quality upper bounds of all nodes in the
subtree of P. The basic idea is briefly described as follows.

First, assume that we have already known the frequency u of any pattern P ′ in
the subtree of P. Then, we will propose a function F(u, PSL, SSL, SL) satisfying the
following conditions:

φ(P ′) ≤ F(u, PSL, SSL, SL). (2)

It is worth mentioning that the computing of F only involves u, PSL, SSL, SL.
Then, we will show F(u, PSL, SSL, SL) is not increasing with the increase of u,

namely

F(u + 1, PSL, SSL, SL) ≤ F(u, PSL, SSL, SL). (3)

We call in Equation (3) the anti-monotonicity property of occupancy upper bound
w.r.t. u.

Since P ′ is a frequent super-pattern of P, the range of u is [freqmin, |DP |], where freqmin
is the minimal frequency threshold (freqmin = 
α · |D|�). Thus, we have the following
theorems.

THEOREM 4.2 (OCCUPANCY UPPER BOUND). For any pattern P ′ in the subtree of P

φ(P ′) ≤ F(freqmin, PSL, SSL, SL). (4)

PROOF. The conclusion holds ifF(u, PSL, SSL, SL) satisfies Inequalities (2) and (3).
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Table IV. The Procedure for Computing
F(3, PSL, SSL, SL)

Sid SL PSL SSL Step (1) Step (2)
S1 6 1 4 (1+4)/6 �
S2 4 1 2 (1+2)/4 �
S3 3 1 1 (1+1)/3
S4 3 1 1 (1+1)/3
S5 5 1 3 (1+3)/5 �

Note that in Theorem 4.2 it is not required to know the frequency of P ′. Thus, this is
the occupancy upper bound of any node in the subtree of P. Next, for the upper bound
of quality we also have

THEOREM 4.3 (QUALITY UPPER BOUND). For any pattern P ′ in the subtree of P

q(P ′) ≤ max
f reqmin≤u′≤|DP |

Q
(

u′

|D| ,F(u′, PSL, SSL, SL)
)

, (5)

when Q(A, B) is monotonically increasing w.r.t B.

PROOF. Since Q(A, B) is monotonically increasing w.r.t B, thus for any P ′ in the
subtree of P with the frequency u (|DP ′ | = u),

q(P ′) = Q
(

u
|D| , φ(P ′)

)
≤ Q

(
u

|D| ,F(u, PSL, SSL, SL)
)

. (6)

Then, the conclusion holds if F(u, PSL, SSL, SL) satisfies Inequality (2).

Theorem 4.3 gives the quality upper bound of any node in the subtree of P. In this
article, we use the weighted sum of support and occupancy, thus the quality upper
bound is

max
f reqmin≤u′≤|DP |

u′

|D| + λ · F(u′, PSL, SSL, SL). (7)

In the following, we will propose the F functions which satisfy Inequalities (2) and (3).

4.2. The Upper Bounds of Occupancy and Quality

In this subsection, we will propose two instances of F which satisfy Inequalities (2)
and (3). We will show that the first F is more efficient, however, less tight than the
second one. We also theoretically prove that the second F gives the tightest upper
bound if only the values of PSL, SSL, SL are used for the computation. Finally, we show
how to achieve the tradeoff between the bound tightness and computational efficiency.

4.2.1. The Efficient Upper Bound F(u, PSL, SSL, SL). We give the following example to show
how the F(u, PSL, SSL, SL) is developed. For the data of PSL, SSL, SL in Table II, we
aim to find the occupancy upper bound of any frequent pattern P ′ (suppose its frequency
u = 3) in the subtree rooted at b. The procedure is as follows.

(1) In order to get the maximal occupancy value of P ′ in each sequence, we can
use the length of the suffix sequence as the extension length of P ′. For example, for
the sequence S1, the maximal occupancy value of P ′ in this sequence is (1 + 4)/6. We
conduct this process for each sequence and get its possibly maximal occupancy value
as shown in the fifth column of Table IV.

(2) Since the frequency of P ′ is 3, from the 5 sequences we need to identify 3 of them
with the top-3 biggest occupancy values. Thus the sequences of S1, S2, S5 are selected.
By averaging these three values we get this upper bound, that is, F(3, PSL, SSL, SL) =
1/3 × (4/5 + 3/4 + 5/6) ≈ 0.79.
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By translating the previous procedure into math presentation, we propose
F(u, PSL, SSL, SL) function as follows.

F(u, PSL, SSL, SL) = 1
u

· max
l1,...,lu

u∑
i=1

PSL[li] + SSL[li]
SL[li]

, (8)

where li is the index of any supporting sequence of P in SL/PSL/SSL and maxl1,...,lu M
means that u sequences are selected from the supporting sequences of P to maximize
any function M.

Next, we propose Properties 2 and 3 to show that the F function in Equation (8)
satisfies Inequalities (2) and (3).

PROPERTY 2. For any P ′ in the subtree of P, let u be the frequency of P ′. Then, the
occupancy of P ′ satisfies that

φ(P ′) ≤ F(u, PSL, SSL, SL). (9)

PROOF. Let’s consider the occupancy of P ′.

φ(P ′) =1
u

∑
S∈DP′

|P ′|
|S| (10)

=1
u

∑
S∈DP′

|P| + |P ′| − |P|
|S| (11)

≤1
u

∑
S∈DP′

PSL[lS] + SSL[lS]
SL[lS]

(12)

≤1
u

max
l1,...,lu

u∑
i=1

PSL[li] + SSL[li]
SL[li]

(13)

Note that lS is the corresponding index of S in SL/PSL/SSL and Inequality (12) is due
to (|P ′| − |P|) ≤ SL[lS]. Since P � P ′, by the anti-monotonicity of frequent pattern,
DP ′ ⊆ DP , Inequality (13) holds.

PROPERTY 3. F(u + 1, PSL, SSL, SL) ≤ F(u, PSL, SSL, SL).

PROOF. Set Ai = maxli
PSL[li ]+SSL[li ]

SL[li ]
(Ai is sorted by descending order)

F(u + 1, PSL, SSL, SL) − F(u, PSL, SSL, SL) (14)

= 1
u + 1

u+1∑
i=1

Ai − 1
u

u∑
i=1

Ai (15)

= 1
u + 1

(
u∑

i=1

Ai + Au+1

)
− 1

u

u∑
i=1

Ai (16)

= 1
u + 1

(
Au+1 − 1

u

u∑
i=1

Ai

)
≤ 0 (17)

It is easy to check that Au+1 − 1
u

∑u
i=1 Ai ≤ 0 since Au ≥ Au+1 ≥ 0, Inequality (17)

holds.

With Properties 2 and 3 we can also easily prove that the results in Theorems 4.2
and 4.3 hold for F(u, PSL, SSL, SL).
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The following example shows how the occupancy upper bound is computed for the
data in Table II (Suppose freqmin = 2). According to the function F proposed in Equa-
tion (8) and Theorem 4.2, the occupancy upper bound for the subtree rooted at b,
denoted as φ̂(b), is

φ̂(b) = F(2, PSL, SSL, SL) = 1/2 × (4/5 + 5/6) ≈ 0.82.

It means that the occupancy of all frequent patterns in this subtree, including pattern
b, bc and be, are less than 0.82.

ALGORITHM 2: The quality upper bound based on F(u, PSL, SSL, SL)
input: the root pattern P, the corresponding three vectors PSL, SSL, SL and n = |DP |.
output: qual, the quality upper bound of any frequent pattern in the subtree rooted at P.

1 for i ← 1 to n do
2 A(i) ← (PSL[i] + SSL[i])/SL[i];

3 sort A by descending order;
4 qual ← 0, occu ← 0, sum ← 0;
5 for u ← 1 to n do
6 sum ← sum+ A↓(u);
7 if u ≥ f reqmin then
8 occu = sum/u;
9 qual = max(qual, u/|D| + λ · occu) ;

Algorithm 2 gives the pseudocode for computing the quality upper bound in Theo-
rem 4.3 with F(u, PSL, SSL, SL). The complexity of Algorithm 2 is O(n · log(n)). We first
use the O(n) time for computing A for the loop in line 1 and then the O(n · log(n)) time
in line 3 for sorting A with quick sort algorithm, finally O(n) time for the loop in line 5.

4.2.2. The “Tightest” Upper Bound F ′(u, PSL, SSL, SL). As mentioned before, F(u, PSL, SSL,
SL) has the parameter u, namely the frequency for any pattern P ′ in the subtree of
P. Using another new parameter v(|P ′| − |P|), namely the extension length of P ′ with
respect to P, we may obtain a stronger upper bound.

The basic idea to this stronger bound is as follows: (1) Let P ′ be any frequent
pattern in the subtree rooted at P with the frequency u (|DP ′ |) and the exten-
sion length v (|P ′| − |P|), then we can propose a function F ′(u, v, PSL, SSL, SL) s.t.
φ(P ′) ≤ F ′(u, v, PSL, SSL, SL). (2) We enumerate all possible v to get the final maximal
value (i.e., upper bound) for P ′, namely F ′(u, PSL, SSL, SL).

The key procedure to this basic idea is how to propose F ′(u, v, PSL, SSL, SL). Next,
we will give the following example to show how the F ′(u, v, PSL, SSL, SL) is developed.
For the data of PSL, SSL, SL in Table II, we aim to find the occupancy upper bound of
any frequent pattern P ′ in the subtree rooted at b with the frequency u = 2 and the
extension length v = 2. The procedure is as follows.

(1) Identify the sequences whose suffix sequences contains at least two items. Oth-
erwise, the sequences must not contain P ′. Thus, three sequences of S1, S2, S5 are
selected while sequences S3, S4 are filtered out.

(2) In order to get the maximal occupancy value of P ′ in each sequence, we can
directly use the extension length v. For example, for the sequence S1, the maximal
occupancy value P ′ in this sequence is (1 + 2)/6. We conduct this process for each
selected sequence from Step (1).

(3) Lastly, from the three sequences we need to identify two of them with the top-2
biggest occupancy values. This time the sequences of S2, S5 are selected. By averaging
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these two values we get this upper bound, that is, F(2, 2, PSL, SSL, SL) = 1/2 × (3/4 +
3/5) ≈ 0.68.

By translating the earlier procedure into math presentation, we first propose F ′(u,
v, PSL, SSL, SL) and then give F ′(u, PSL, SSL, SL) with the following properties.

PROPERTY 4. Let F ′(u, v, PSL, SSL, SL)

= 1
u

· max
l1,...,lu,

SSL[li ]≥v

u∑
i=1

PSL[li] + v

SL[li]
. (18)

Then for any P ′ in the subtree of P with the frequency u and the extension length v, we
have φ(P ′) ≤ F ′(u, v, PSL, SSL, SL). Furthermore, for any pattern P ′ in the subtree of P
with the frequency u (and no constraint on v), we have

φ(P ′) ≤ max
0≤v≤SSL↓[u]

F ′(u, v, PSL, SSL, SL) (19)

�F ′(u, PSL, SSL, SL) (20)

PROOF. For any pattern P ′ in the subtree of P, we have

φ(P ′) =1
u

∑
S∈DP′

|P ′|
|S| (21)

=1
u

∑
S∈DP′

|P| + |P ′| − |P|
|S| (22)

=1
u

∑
S∈DP′

SSL[lS] + v

SL[lS]
(23)

≤1
u

· max
l1,...,lu,

SSL[li ]≥v

u∑
i=1

PSL[li]) + v

SL[li]
. (24)

Since P � P ′, by the anti-monotonicity of frequent pattern, DP ′ ⊆ DP . Then we
can assign any v item labels appended to P and select u sequences from DP to get a
maximal occupancy value for P ′. Note that the length of the suffix sequence of P in
any of the selected u sequences should be no less than v (i.e., SSL[li] ≥ v), otherwise,
the sequence must not contain P ′. Thus, in Equation (24) holds.

Then we enumerate all possible v to get the final maximal value for P ′, namely
F ′(u, PSL, SSL, SL). Note that the largest valid extension length of P ′ with respect to
P should be no larger than SSL↓[u], otherwise, P ′ must not be frequent. We unify the
bounds F ′ over v and then get

φ(P ′) ≤ max
0≤v≤SSL↓[u]

F ′(u, v, PSL, SSL, SL).

PROPERTY 5. F ′(u + 1, PSL, SSL, SL) ≤ F ′(u, PSL, SSL, SL). The definition of F ′(u,
PSL, SSL, SL) is given in Equation (20).

PROOF. By the definition of F ′, similar to the proof of Property 3, we have F ′(u + 1,
v, PSL, SSL, SL) ≤ F ′(u, v, PSL, SSL, SL) for any u, v. Since SSL↓[u + 1] ≤ SSL↓[u], we
have

F ′(u + 1, PSL, SSL, SL) = max
0≤v≤SSL↓[u+1]

F ′(u + 1, v, PSL, SSL, SL) (25)
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≤ max
0≤v≤SSL↓[u+1]

F ′(u, v, PSL, SSL, SL) (26)

≤ max
0≤v≤SSL↓[u]

F ′(u, v, PSL, SSL, SL) (27)

= F ′(u, PSL, SSL, SL). (28)

With Properties 4 and 5 we can also easily prove that the results in Theorems 4.2
and 4.3 hold for F ′(u, PSL, SSL, SL).

The following example shows how the occupancy upper bound is computed for the
data in Table II. We can sort SSL by descending order, that is, SSL↓ = 〈4, 3, 2, 1, 1〉.
Suppose freqmin = 2, then SSL↓[freqmin] = 3. According to the function F ′ proposed in
Equation (20) and Theorem 4.2, the occupancy upper bound for the subtree rooted at b
is

φ̂(b) = max
0≤v≤3

F ′(2, v, PSL, SSL, SL).

According to Equation (18), we can get

F ′(2, 0, PSL, SSL, SL) = 1/2 × (1/3 + 1/3) ≈ 0.33
F ′(2, 1, PSL, SSL, SL) = 1/2 × (2/3 + 2/3) ≈ 0.67
F ′(2, 2, PSL, SSL, SL) = 1/2 × (3/4 + 3/5) ≈ 0.68
F ′(2, 3, PSL, SSL, SL) = 1/2 × (4/6 + 4/5) ≈ 0.73.

Thus φ̂(b) = max{0.33, 0.67, 0.68, 0.73} = 0.73, which is smaller than 0.82 (the upper
bound based on function F in Equation (8)). In other words, F ′ is tighter than F.

Algorithm 3 gives the pseudocode for computing the quality upper bound in The-
orem 4.3 with F ′(u, v, PSL, SSL, SL). The complexity of Algorithm 3 is O(n · log(n) ·
SSL↓[freqmin]). We first use O(n · log(n)) time for sorting SSL with quick sort algorithm
in line 1, then use O(n · log(n) · SSL↓[freqmin]) time for the double loop from line 3 to
line 8.

ALGORITHM 3: The quality upper bound based on F ′(u, v, PSL, SSL, SL)
input: the root pattern P and its corresponding three vectors PSL, SSL, SL and n = |DP |.
output: qual, the quality upper bound of any pattern in the subtree rooted at P.

1 sort SSL by descending order;
2 qual ← 0, occu ← 0, sum ← 0;
3 for v ← 0 to SSL↓[ f reqmin] do
4 for i ← 1 to n do
5 if SSL[i] ≥ v then
6 A(i) ← (PSL[i] + v)/SL[i];

7 sort A by descending order;
8 for u ← 1 to A.size() do
9 sum ← sum+ A↓(u);

10 if u ≥ f reqmin then
11 occu = sum/u;
12 qual = max(qual, u/|D| + λ · occu) ;

Also, we theoretically prove that F ′ is the tightest upper bound if only the values of
PSL, SSL, SL are used in the computation. Namely, we have the following properties.
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Table V. The Procedure for Computing F ′(2, 2, PSL, SSL, SL)

Sid SL PSL SSL Step (1) Step (2) Step (3)
S1 6 1 4 � (1+2)/6
S2 4 1 2 � (1+2)/4 �
S3 3 1 1
S4 3 1 1
S5 5 1 3 � (1+2)/5 �

PROPERTY 6. F ′(u, PSL, SSL, SL) is the tightest upper bound for arithmetic occupancy
of any node in the subtree of P with u supporting sequences if we only use the values of
PSL, SSL, SL to compute the bound.

PROOF. We prove by contradiction. Assume that there exists another upper bound F̃
s.t. F̃(u, PSL, SSL, SL) < F ′(u, PSL, SSL, SL) for any given parameters of u, PSL,SSL,
SL. Then, we can construct a sequence database DP s.t. |PSi| = PSL[i], |SSi| = SSL[i],
|Si| = SL[i] where PSi and SSi are the prefix sequence and suffix sequence of P
in any Si (Si ∈ DP), respectively. Furthermore, there exists any pattern P ′ in the
subtree rooted at P s.t. |DP ′ | = u and φ(P ′) = F ′(u, PSL, SSL, SL). If we apply
the upper bound F̃ to the data of DP , the occupancy of any pattern P ′ will be no
bigger than F̃(u, PSL, SSL, SL). However, we have a pattern P ′ in this subtree s.t.
φ(P ′) = F ′(u, PSL, SSL, SL) and F ′(u, PSL, SSL, SL) ≤ F̃(u, PSL, SSL, SL), thus the con-
tradiction occurs.

The construction of the database DP is quite straightforward. Note that for any
pattern P ′ with |DP ′ | = u in the subtree of P,

F ′(u, PSL, SSL, SL) = 1
u

· max
l1,...,lu

u∑
i=1

PSL[li] + v

SSL[li]
,

there exists l∗1, . . . , l∗u s.t.

φ(P ′) = 1
u

u∑
i=1

PSL[l∗i ] + v

SL[l∗i ])
.

Then we can construct the database DP = {S1, . . . , Sn} (n is the length of SL) s.t.

|PSi| = PSL[i], |SSi| = v, |Si| = SL[i],

for 1 ≤ i ≤ n, and |P ′| − |P| = v. Then, the DP can be constructed such that P ′ has no
other supporting sequences except Sl∗i . Then

φ(P ′) = 1
u

u∑
i=1

PSL[l∗i ]) + v

SL[l∗i ]
= F ′(u, PSL, SSL, SL).

The procedure in Table V actually generates the supporting transactions, on which
the occupancy is exactly equal to this upper bound. Therefore, F ′(u, PSL, SSL, SL) is
the tightest one.

PROPERTY 7. max f reqmin≤u≤DP ( u
|D| + λ· F ′(u, PSL, SSL, SL)) is the tightest upper bound

of the arithmetic quality (arithmetic occupancy used inside) for any node in the subtree
of P if we only use the values of PSL, SSL, SL to compute the bound.

PROOF. The proof is trivial based on Property 6.

4.2.3. Tradeoff Between Tightness and Efficiency. So far, we have proposed two quality
bounds. Although F ′ is provably tighter than F, when SSL↓[ f reqmin] is large, it also
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Table VI. The Complexity of Different Estimation Methods

Quality upper bound Complexity

F O(n · log(n))

F ′ O(n · log(n) · SSL↓[freqmin])

F̂ O(n · log(n) · m)

takes much more time than F and possibly becomes the computing bottleneck. To
alleviate this situation, we propose a new technique that achieves balance between the
bound tightness and computational efficiency. The basic idea is as follows. Instead of
enumerating every possible value of SSL in the range of [0, SSL↓[ f reqmin]], we split
this large interval into m smaller intervals [v0, v1 − 1], . . . , [vm−1, vm − 1] (v0 = 0, vm =
SSL↓[ f reqmin] + 1).

Note that v = |P ′| − |P|, for each interval [vk−1, vk − 1], using the assumption that
vk−1 ≤ v < vk, we obtain a tighter bound on occupancy (quality) in Property 8 (9). At
last, we unify the m bounds (much smaller than SSL↓[ f reqmin]) and get a final result.
The time complexity for computing this quality bound is O(n· log(n) ·m). Using a proper
value for m, we achieve the tradeoff between the efficiency and effectiveness of the
bound. The complexity for these three methods are summarized in Table VI.

PROPERTY 8. For any pattern P ′ in the subtree of P, let u be the frequency of P ′,
v = (|P ′| − |P|). Assume vk ≤ v < vk+1, then the occupancy of P ′ satisfies that

φ(P ′) ≤ 1
u

· max
l1,...,lu,

SSL[li ]≥vk

u∑
i=1

PSL[li]+ min(SSL[li], vk+1 − 1)
SL[li]

. (29)

PROOF. The right-hand side of the previous equation is denoted as F̂(u, vk, vk+1,
PSL, SSL, SL). The proof combines the ideas in the proof of Property 2 and the proof
of Property 4. Since we have assumed vk ≤ |P ′| − |P| ≤ vk+1 − 1, combining this with
|DP ′ | = u. Thus, for any pattern P ′ as described

φ(P ′) = 1
u

∑
S∈DP′

|P ′|
|S| (30)

= 1
u

∑
S∈DP′

|P| + |P ′| − |P|
|S| (31)

≤ 1
u

∑
S∈DP′ ,

SSL[lS]≥vk

PSL[lS] + min(SSL[li], vk+1 − 1)
SL[lS]

(32)

≤ 1
u

· max
l1,...,lu,

SSL[li ]≥vk

u∑
i=1

PSL[li] + min(SSL[li], vk+1 − 1)
SL[li]

. (33)

PROPERTY 9. Let u′ = freqmin be the minimum frequency threshold. For any integers
0 = v0 < · · · < vm = SSL↓[u′] + 1,

F̂(u′, PSL, SSL, SL) = max
0≤k<m

F̂(u′, vk, vk+1, PSL, SSL, SL),

is the upper bound on arithmetic occupancy for any frequent P ′ in the subtree of P. And

max
u′≤u≤|DP |

u/|D| + λ · F̂(u, PSL, SSL, SL)),

is the upper bound on quality for any P ′.
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Table VII. An Example of Sequence Database with Weights

Sid Sequence SW PSW SSW
S1 a[5]b[3]c[2]d[3]e[2]g[2] 〈5, 3, 2, 3, 2, 2〉 〈3〉 〈2, 3, 2, 2〉
S2 a[5]b[6]c[5]f[3] 〈5, 6, 5, 3〉 〈6〉 〈5, 3〉
S3 a[6]b[6]c[5] 〈6, 6, 5〉 〈6〉 〈5〉
S4 a[3]b[4]c[5] 〈3, 4, 5〉 〈4〉 〈5〉
S5 a[4]b[3]e[2]h[2]i[3] 〈4, 3, 2, 2, 3〉 〈3〉 〈2, 2, 3〉

PROOF. The proof is trivial based on Property 8.

4.3. Extension on Item Weights

So far, in this article all items in sequence databases are treated uniformly, but real
items have different importance [Tao 2003]. Thus, we extend the definition of occupancy
to the situation when the weights on the items are considered. A weight function W
is used to store the map of weights to items in a sequence database. For example,
Table VII shows a sequence database with the item weight, in which the number in the
square bracket followed by any item is the weight of the item occurrence in a sequence.
For example, W(a, S1) is 5. The occupancy with weighted items is defined as follows.

Definition 4.4 (Weighted Occupancy). The occupancy of a pattern P with item weight
is defined as

φ(P) = AVG

({ ∑
i∈P W(i, S)∑
j∈S W( j, S)

: S ∈ DP

})
,

Obviously, the original occupancy is the special case when all item weights are equal
to 1. For example, the weighted occupancy of pattern abc in Table VII is 1

4 · ( 10
17 + 16

19 +
17
17 + 12

12 ). To compute the upper bound with item weight, we need the following notions
w.r.t. P.

Definition 4.5 (SW& PSW& SSW). The Sequence Weight matrix of P, denoted as SW,
is used to record the weight vector of each sequence S (S ∈ DP). The Prefix Sequence
Weight matrix of P, denoted as PSW, is used to record the weight vector of each prefix
sequence in S. The Suffix Sequence Weight matrix of P, denoted as SSW, is used to
record the weight vector of each suffix sequence in S.

Note that SW, PSW, and SSW are three matrices, in which the first index refers to the
sequence number and the second refers to the index of an item in a sequence. Table VII
also shows SW, PSW, and SSW of pattern b. As shown in this Table, SW[5][1] = 4,
PSW[5][1] = 3 and SSW[5][1] = 2.

Similar to the arithmetic occupancy with no item weight in Section 4.2, we also
propose two bounds with item weight in the same sprits. The first bound is more effi-
cient, while the second one is the tightest upper bound with certain input constraints.
Specifically, we give the following properties and their proofs are similar to that in
Section 4.2.

PROPERTY 10 (THE EFFICIENT UPPER BOUND ON φ). For any frequent pattern P ′ in the
subtree of P

φ(P ′) ≤ 1
u′ ·max

l1,...,lu′

u′∑
i=1

∑|PSW[li ]|
j=1 PSW[li][ j] + ∑|SSW[li ]|

j=1 SSW[li][ j]∑|SW[li ]|
j=1 SW[li][ j]

, (34)

where u′ is the minimum frequency threshold.
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Table VIII. An Example of Sequence Database with Multiple Itemsets

Sid Sequence PSL SSL SL
S1 〈{a,b},{a,c,d},{c,e,g}〉 2 6 8
S2 〈{a,b},{b,c,f}〉 2 3 5
S3 〈{a,b},{a,c,d}〉 2 3 5
S4 〈{a,b},{c,d},{c,e,g}〉 2 5 7
S5 〈{a,b},{e,h},{h,i}〉 2 4 6

PROPERTY 11 (THE “TIGHTEST” UPPER BOUND ON φ). For any frequent pattern P ′ in the
subtree of P

φ(P ′) ≤ 1
u′ · max

0≤v≤SSL↓[u′]
F(u, v, PSW, SSW, SW), (35)

and

F(u, v, PSW, SSW, SW) = max
l1,l2,...,lu′
SSL[li ]≥v

u′∑
i=1

∑|PSW[li ]|
j=1 PSW[li][ j] + ∑v

j=1 SSW[li]↓[ j]∑|SW[li ]|
j=1 SW[li][ j]

, (36)

where u′ is the minimum frequency threshold, SSL can be directly obtained from SSW
and SSW[li]↓ is a weight vector in descending order, for example, SSW[1]↓ in Table VII
is 〈3, 2, 2, 2〉.

We can also prove that the second is the tightest bound on arithmetic occupancy
using only PSW, SSW, SW. Similarly, we may achieve the tradeoff between the bound
tightness and computational efficiency, and induce the corresponding upper bound on
quality.

In Section 5.2, we will show how to set the item weights in the real application of
print-area recommendation and how these item weights improve the performance.

4.4. Extension on Multiple-Itemset Sequences

Here, we discuss how the proposed algorithm DOFRA is extended to handle the
multiple-itemset sequences. Table VIII gives an example database with multiple-
itemset sequences.

First, we extend the occupancy definition for multiple-itemset sequences. Specifically,

Definition 4.6 (Occupancy for multiple-itemset sequences). The occupancy of a pattern
P for multiple-itemset sequences defined as

φ(P) = AVG
({

Num(P)
Num(S)

: S ∈ DP

})
,

Where Num(P) means the number of items in P and Num(S) means the number of
items in S.

Take the database shown in Table VIII as an example. The occupancy (arithmetic)
for pattern 〈{a, b}〉 is 1

5 · ( 2
8 + 2

5 + 2
5 + 2

7 + 2
6 ) ≈ 0.33. Note that the proposed techniques

for computing upper bounds can be directly applied for this definition.
As [Ayres et al. 2002] shown that there are two kinds of extensions to grow a certain

prefix sequence, namely, sequence-extension (S-extension) and itemset-extension (I-
extension). A sequence extension w.r.t a prefix is generated by appending a new event
consisting of single item to the prefix sequence, while an itemset extension w.r.t a prefix
is generated by adding an item to any one event of the prefix sequence. Instead of
using only S-extension in Figure 3 for frequent single-itemset sequences enumeration,
we can use both S-extension and I-extension for frequent multiple-itemset sequences
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enumeration. Since we only need statistical information such as the length information
(SL, PSL, and SSL) or weight information (SW, PSW, and SSW) for computing the upper
bounds, we can apply the similar idea to compute the upper bounds for the scenario of
I-extension.

5. EVALUATION ON EFFECTIVENESS

In this section, we evaluate the effectiveness of occupancy in two real applications,
namely the print-area recommendation and the travel-landscape recommendation.
Specifically, we demonstrate the following: (1) how the concept of occupancy help to
improve the recommendation performance compared with the baseline, (2) how the
weighted occupancy help to improve the recommendation performance, (3) how the
different occupancy definitions affect the recommendation performance, and (4) how
the occupancy weight λ affects the recommendation performance.

5.1. Experimental Setup

5.1.1. Motivated Applications and Datasets.

Print-area Recommendation. Assume that we have the log database which
records how previous users clipped the Web pages from a Web site. Each transac-
tion refers a set of content clips selected on a Web page. Given a Web page from the
same Web site, we aim to recommend the informative clips for this Web page. More
specifically, let I be the complete set of distinct clips in the database. For a given Web
page we can get a set Q ⊆ I of clips which are included in this Web page. Thus, our
task is to select a subset of Q for the clip recommendation. By mining top qualified
itemset the recommended itemset is the one F ⊆ Q which has the maximal quality
value among the qualified itemsets. To show the effectiveness of the proposed method
we manually labeled the ground-truth of print-areas on the 2,000 Web pages from the
100 major print-worthy Web sites4.

Travel-landscape Recommendation. We exploit a real world travel data set used
in Liu et al. [2011] for evaluating the effectiveness of occupancy on a sequence database.
This data set is provided from a travel company in China. There are nearly 220,000
purchase records (packages) from tourists with the travel time from January 2000
to October 2010. Each record can be viewed as a sequence of landscapes. Note that
each record has a location attribute. For a tourist who wants to have a journey in a
city named “C”, we first collect all records whose location attribute equals to “C” as a
sequence database. Based on this sequence database, we aim to recommend a sequence
of interesting landscapes in ‘C’ with the maximal quality value to the given tourist. To
show the effectiveness of the proposed method, we filter out the purchase records with
unavailable landscapes and finally obtain 22, 929 records from 198 cities.

5.1.2. Evaluation Methods and Metrics. We compare the proposed solution with the max-
imal frequent itemset based method (introduced in Section 2.3). Specifically, we can
first generate all maximal frequent itemsets and among them select the one with the
largest number of items for recommendation.

In the application of print-area recommendation, for each Web page from a Web site,
we use leave-one-out cross validation to evaluate the recommendation accuracy, that
is, we iteratively select one page as query and the log data on the left Web pages from
the same Web site are used to generate the transaction database5 for recommendation.
A recommendation result actually refers to a set of content clips on the given Web page.

4For details about this dataset, please refer to http://home.ustc.edu.cn/∼stone/DOFIA-Appendix.pdf.
5We transform this transaction database as a sequence database by lexically ordering the items, on which
we can run DOFRA.
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Fig. 4. The region overlap for a Web page.

Table IX. The Performance of the Baseline Method
on the 2,000 Web Pages

α Pre(%) Rec(%) F1(%)
0.0 91.51 93.16 90.73
0.1 92.04 93.69 91.85
0.2 90.77 90.78 89.52
0.3 90.25 90.63 88.89
0.4 87.80 87.56 86.06
0.5 83.26 81.07 79.36

Then, we can average these performance values over the 2,000 Web pages to get the av-
erage performance. Similarly, in the application of travel-landscape recommendation,
for each user’s consumed record from a city, we iteratively select one record from a city
as query and the log data on the left records from the same city are used to generate
the sequence database for recommendation. Then, we can average these performance
values over the 22,929 records to get the average performance.

For the purpose of evaluation, we can calculate the precision Pre, recall Rec, and F1
score between the recommendation pattern and the ground truth query. Specifically

Pre = I(R, G)
I(R)

, Rec = I(G, R)
I(G)

, F1 = 2 × Pre × Rec
Pre + Rec

, (37)

For different applications, I(., .) has different meanings. In the print-area recommen-
dation, since a recommendation result refers to a set of content clips on the given Web
page, we can evaluate its effectiveness by calculating the overlap area between the
recommended clips (R) and the ground truth on the query page (G). Thus, I(R, G) in
print-area recommendation is the overlap area between R and G and I(R) (or I(G))
means the area of R (or G). As shown in Figure 4, the two blue rectangles refer to
the two clips selected by a user while the two yellow ones represent the two clips
recommended by DOFRA, and the area O is the overlap area. In travel-landscape rec-
ommendation, a recommended pattern actually refers to a sequence of landscapes in
the given city. Since the items in a pattern have the sequential order, thus, I(R, G) is
the size of the longest common subsequences (LCS) [Gorbenko 2012] between R and G
and I(R) (or I(G)) is the number of items in R (or G).

5.2. Results on Print-Area Recommendation

The results of the baseline method are summarized in Table IX. The results of DOFRA
are shown in Table X. Note that for the baseline method, the maximal F1 score is 91.85%
(σ = 0.18) when α = 0.1, while DOFRA with arithmetic occupancy and item weights
achieves a maximal F1 score of 93.68% (σ = 0.15) when λ = 0.1. So the improvement on
recommendation accuracy is clear. We also conduct significance tests on the difference
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Table X. The Performance of DOFRA on the 2,000 Web Pages (α = 0.05 and β = 0.5 )

Harmonic occupancy Arithmetic occupancy
Without item weights With item weights Without item weights With item weights

λ Pre(%) Rec(%) F1(%) Pre(%) Rec(%) F1(%) Pre(%) Rec(%) F1(%) Pre(%) Rec(%) F1(%)
0.0 92.68 93.35 91.77 92.71 93.77 92.03 92.71 93.35 91.79 92.86 94.14 92.40
0.05 91.98 93.03 91.27 92.94 95.40 93.27 92.22 93.19 91.50 93.00 95.57 93.40
0.1 92.55 94.13 92.34 93.03 95.70 93.48∗ 92.55 94.12 92.33 93.17 95.91 93.68∗
0.2 93.05 94.63 92.81 92.85 95.45 93.24 92.96 94.99 93.02∗ 92.84 95.63 93.33
0.3 92.87 94.78 92.84∗ 92.62 95.36 93.07 92.43 94.56 92.54 92.72 95.35 93.10
0.4 92.84 94.57 92.55 92.36 95.11 92.76 92.37 94.37 92.26 92.46 95.22 92.88
0.5 92.67 94.54 92.44 92.1 94.77 92.44 92.17 94.36 92.15 92.20 94.81 92.51
1.0 91.61 92.9 90.95 91.29 94.00 91.42 91.44 92.78 90.83 91.39 94.08 91.51
+∞ 85.67 85.83 83.09 90.48 93.09 90.21 85.96 85.22 82.55 90.63 92.96 90.16
Average 91.77 93.04 91.10 92.32 94.69 92.43 91.65 92.96 91.10 92.42 94.81 92.56
*Passes the significance test (significantly larger than the baseline α = 0.1) at the confidence level of 0.05.

of different methods with the best results. All tests use the t-statistic and set the
confidence level to 0.05.

Since we have considered the area size of content clips in our evaluation, it is natural
to set the weight of a clip to its area size on the Web page. Intuitively, if a content clip
covers a large area of a Web page, we should give it more weight in computing occupancy.
Thus, it is more likely to be recommended. We look at the entries in Table X to see the
effects of item weight for different occupancy definitions. The average F1 score of the
models with item weights is 1.33% higher than the models without item weights for
harmonic occupancy, so does arithmetic occupancy. We can also observe that the model
with arithmetic occupancy is slightly better than that with harmonic occupancy in this
dataset. Note that best results of DOFRA significantly larger than the baseline with
α = 0.1 at the confidence level of 0.05.

The role of λ in DOFRA to this application is quite interesting. Intuitively, λ repre-
sents the emphasis we put on occupancy. A higher emphasis on occupancy is expected to
lead to a better recall. Such is indeed the case—when λ increases from 0.0 to around 0.2,
recommendation recall increases smoothly for the models. Interestingly, recommenda-
tion precision increases at the same time. The main reason is that with the increase
of λ the quality value (considering both support and occupancy) may lead to better
patterns whose area intersection with the ground truth have both better precision and
better recall. However, when λ is too large, the performance of DOFRA deteriorates.
Too much emphasis on occupancy tends to find patterns with a very small support just
above the threshold α and the recommendation quality will naturally drop greatly. In
practice, λ can be chosen by cross validation to achieve the best performance in similar
manners. Note that the line of λ = 0 presents the results by using closed frequent
pattern mining algorithm (support is only considered). We can observe that DOFRA
outperforms the closed frequent pattern mining method.

5.3. Results on Travel Recommendation

The results of the baseline method and DOFRA are shown in Tables XI and XII,
respectively. Note that for the baseline method in Table XI, the maximal F1 score is
87.11% (when α = 0.4), while DOFRA achieves a maximal F1 score of 87.99% (when
λ = 0.8) for harmonic occupancy. We can also find that the best performance with
harmonic occupancy and that with arithmetic occupancy is very close. The analysis
of λ in DOFRA to this application is similar to the print-area application which have
been discussed in Section 5.2. Note that best results of DOFRA do not significantly
larger than the baseline with α = 0.4 at the confidence level of 0.05. The reason may be
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Table XI. The Performance of the Baseline
Method on the 22,929 Travel
Package Purchase Records

α Pre(%) Rec(%) F1(%)
0.0 54.00 76.54 60.87
0.1 70.67 87.32 75.74
0.2 72.79 88.28 77.45
0.3 88.67 86.00 86.00
0.4 90.40 86.51 87.11
0.5 91.20 85.52 86.78

Table XII. The Performance of DOFRA on the 22,929 Travel Package Purchase
Records (α = 0.01 and β = 0.5)

Harmonic occupancy Arithmetic occupancy
λ Pre(%) Rec(%) F1(%) Pre(%) Rec(%) F1(%)
0.0 94.36 68.49 77.64 94.46 68.28 77.53
0.2 93.88 79.45 84.40 93.99 79.33 84.38
0.4 93.73 81.09 85.39 93.79 80.41 84.97
0.6 92.92 82.76 86.06 92.93 82.71 86.04
0.8 91.68 86.73 87.99 92.87 82.94 86.14
1.0 90.42 86.93 87.46 90.86 86.88 87.69
1.2 90.27 87.01 87.41 90.36 87.00 87.47
1.6 90.04 87.15 87.36 90.23 87.20 87.51
2.0 90.00 87.19 87.37 89.93 87.06 87.25
+∞ 86.93 86.12 84.99 86.93 86.12 84.99

that the records in the travel-package data are less diversified than that in print-area
dataset.

In addition, we also present the top qualified pattern from “Beijing” for a case study,
that is, 〈Tian An Men, Jingshan Park, Temple of Heaven, The Lama Temp, Forbidden
City, Beihai Park, Summer Palace, The Great Wall〉. Note that the first six landscapes
are near together in the center of Beijing city (in the second ring road) while Summer
Palace is far away from the center of the city (in fifth ring road) and The Great Wall is
out of “Beijing”. Indeed, those landscapes in this pattern are ordered in spatial order.
Moreover, this pattern covers almost all of the famous landscapes in Beijing.

One may think that it is hard to judge the recommended route for “Beijing” is a
good one without considering the time-constraint and moneytary cost. Without such
constraints, it is intuitive that more places in the recommendation, the better the rec-
ommendation should be. However, if we know each user’s time and money constraints,
it is easy to extend our method for pattern recommendation to satisfy each user’s needs.
There are two possible extensions. The first is to obtain the sequential database by fil-
tering the log data that do not satisfying user’s time and money constraints. Based
on this filtered database, then we can directly run DOFRA for high quality pattern
recommendation. This method is called pre-process one. Another alternative method
is called in-process one. To be specific, when running DOFRA, the current searched
pattern is qualified if satisfying not only support and occupancy constraints but also
time and money constraints.

6. EVALUATION ON EFFICIENCY

In this section we present the empirical evaluation on the efficiency of the proposed
algorithm DOFRA over the real and large synthetic data sets. Specifically, we compare
DOFRA’s running time with the baseline method to our problem. Here, the base-
line method is to find all frequent closed patterns first, then compute each pattern’s
occupancy and quality and output top qualified one among them. We implemented
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Table XIII. Characteristic of Datasets

Datasets #Seq. #Items AveLen MaxLen Type
Gazelle 29,369 1,423 3 651 Very sparse
Msnbc 989,818 17 5 14,795 Sparse
Snake 175 20 67 121 Dense
D100kC15. 100,000 3,000 15 41 Little dense

Table XIV. Default Parameters of Datasets

Datasets α β λ k
Gazelle 0.0002 0.5 1 1
Msnbc 0.0003 0.5 1 1
D100kC15D3k 0.001 0.5 1 1
Snake 0.7 0.5 1 1

BIDE [Wang and Han 2004] as the baseline because of its high efficiency to find fre-
quent closed patterns. In addition, we also implemented DOFRA_W (using the bound
techniques proposed in Section 4.3) and BIDE_W to mine the qualified patterns on
the weighted data. Note that a nontop-k version of DOFRA (i.e., k = 1) is used for the
comparison with BIDE.

6.1. Datasets and Experimental Environment

In Section 5, we have used two datasets: 2,000 Web pages from 100 Web sites and
22,929 travel packages from 198 cities. For effectiveness evaluation, we iteratively
select one Web page (or travel) as query and the log data on the left Web pages (or
travel packages) from the same Web site (or city) are used to generate the transaction
(or sequence) database. We can find that the average size for each Web site or each city
is very small, it is not appropriate to use these two datasets for efficiency evaluation.
In order to better evaluate the efficiency of DOFRA, we adopt three real datasets and
one synthetic datset with different characteristics in our experiments.

The first real dataset is Gazelle [Kohavi et al. 2000] and is very sparse, which contains
totally 29,369 customer’s Web click-stream data. The second real dataset is Msnbc and
is sparse. It contains totally 989,818 customer’s Web click-stream data6. The third real
datasets is Snake and is dense. It contains totally 175 Toxin-Snake protein sequences
and 20 unique items. The last dataset is a generated dataset D100kC15N3k by IBM
synthetic data generator [Agrawal and Srikant 1995], which is little dense. The detailed
characteristics of the four datasets are summarized in Table XIII.

We will check the performance changes with different settings of problem param-
eters (i.e., α, β, λ and k). The default parameters for each dataset are summarized
in Table XIV (the default setting of α follows a principle: the denser the dataset, the
larger α). We will adjust one parameter while fixing all the others to see the efficiency
changes. Then, we will compare the tradeoff between bound tightness and computa-
tional efficiency. Finally, we will show the effectiveness of the upper bounds of weighted
occupancy proposed in Section 4.3. In this article, we only present the performance on α
over the four data sets. For the description succinct, we then show the performance on
β, λ, k, the replication factor, the tradeoff parameter and the comparison of DOFRA_W
and BIDE_W over the data Gazelle (similar results can also be found when considering
the other three datasets). By default, we use the upper bounds proposed in Section 4.2.1.

All the algorithms were implemented in C++ and experiments were performed on a
Windows 7 laptop with quad core Intel i5-2450M processor and 4GB of main memory.

6downloaded from http://archive.ics.uci.edu/ml/datasets/.
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Fig. 5. Comparison of DOFRA and BIDE w.r.t. α over the four datasets.

6.2. Evaluation on Different Problem Settings

The support threshold. In practice, it is often desirable to have a low frequency
threshold in order to detect more diverse patterns, which leads to the problem of too
many frequent patterns and long running time. Figure 5(a) and Figure 5(b) demon-
strate the number of searched nodes and running time between DOFRA and BIDE on
dataset Gazelle for support thresholds varying from 0.0001 to 0.0006. We can see that
DOFRA always searches less nodes and runs much faster than BIDE. For example, at
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Fig. 6. The effects of β on DOFRA over Gazelle.

Fig. 7. The effects of λ on DOFRA over Gazelle.

support 0.0001, DOFRA is more than 8 times faster than BIDE while it only searches
about 1.9% nodes of those searched by BIDE. Similar results can also be found in
Figures 5(c) through 5(h) for other datasets. Depending on different characteristics of
the datasets, the effect of pruning can be different. Specifically, the effect of pruning is
increasing when the dataset becomes dense. For example, for the very dense dataset
Snake, DOFRA runs about 32 times faster than BIDE when α is lower than 0.7. This
indicates that our method can work well especially on very dense databases which
makes other baselines prohibitive.

The occupancy threshold. As shown in Figure 6, with the increase of the occupancy
threshold β, the running time and the number of the visited nodes decreases moderately
for DOFRA. For example, as β increases from 0.1 to 0.6, the number of nodes searched
decreases from 11, 662 to 10, 076 and the running time decreases slightly from 47.7s to
44.3s. One might expect that the increase in running time is exponential, but since we
are doing the top qualified search, the most qualified node that DOFRA has encountered
helps a lot in reducing the search space, even if we set a low value in occupancy
threshold. This observation gives us a lot of flexibility in choosing a proper value for β.

The occupancy weight parameter. The occupancy weight parameter λ reflects
the priority we put on occupancy. As can be seen from Figure 7, with the increase of λ
from 0 to 0.1, the number of nodes visited by DOFRA increases from 4, 021 to 11, 194
and the running time increases from 20s to 47s. When λ > 0.1, the number of nodes
visited and running time converges because occupancy is already playing the major
role here, and thus the increase on λ has little effect on the behavior of the algorithm.

Top k. In practice, we often want to mine more than just the top few qualified patterns
for recommendation. With more patterns we can even do ranking on these patterns
and find a set of diverse and high-quality patterns. Here, we increase k to check the
performance of DOFRA. As can be seen from Figure 8, both the number of searched
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Fig. 8. The effects of top-k on DOFRA.

Fig. 9. The effects of scalability factor on BIDE and DOFRA over Msnbc.

nodes and the running time grow linearly from 48.5s to 152.7s with the increase of k
from 1 to 1000. Similar to Wu et al. [2012], in order to show the tradeoff performance, we
also compare the proposed top-k algorithm DOFRA with BIDE tuned with the optimal
threshold to discover the same amount of pattern (denoted as BIDE(Optimal)). As can
be observed from Figure 8, the gap between the two algorithms becomes smaller as k
increases.

6.3. Evaluation on the Scalability Factor

Here, we test the scalability of the algorithm on different sizes of databases. Specifically,
we use the 981, 898 sequences from Msnbc as the basic database and then scale it up
by using 10%, 20%, 30%, 40%, and 50% of this database. The results are shown in
Figure 9, including the running time and the number of nodes in prefix projected
database tree searched by BIDE and DOFRA over Msnbc with the scalability factor
from 10% to 50%. As can be seen from Figure 9(a), DOFRA only searches about 40%
nodes of those searched by BIDE. With respect to running time, DOFRA’s running
time grows linearly, from 28.6s for 10% of Msnbc to 117.9s for 50% of Msnbc. BIDE’s
running time also grows linearly from 140s for 10% of Msnbc to 271s for 50% of Msnbc,
but DOFRA is much faster than BIDE.

6.4. Tradeoff Between Tightness and Efficiency

In Section 4.2.3, we proposed a technique that achieves tradeoff between bound tight-
ness and computational efficiency. Specifically, instead of enumerating each possible
value of v in the range of [0, SSL↓[freqmin]] as F ′ does, we suggest to split the large inter-
val into smaller intervals [v0, v1 −1], . . . , [vK−1, vK −1], (v0 = 0, vK = SSL↓[freqmin]+1).
Figure 10 shows the effect of this technique on the data set Gazelle with α = 0.0005, β =
0.5, λ = 0.001. The x-axis shows the “interval length”, that is, vi − vi−1 (we divide the
interval evenly) and the y-axis shows the number of nodes searched and the running
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Fig. 10. Tradeoff between tightness and efficiency over Gazelle.

Fig. 11. Comparison of DOFRA_W and BIDE_W w.r.t. α over Gazelle with weights.

time in the two figures respectively. We can see that smaller the interval length, tighter
the bound and fewer the nodes searched. However, the shortest running time does not
occur when the bound is tightest (646 nodes searched when interval length=1), since
the computation is too costly. And also the shortest time does not occur when the effi-
cient bound is used (658 nodes searched when interval length=+inf). In fact, the overall
performance is the tradeoff between bound tightness and computational efficiency. In
this case, the algorithm is fastest when the interval length is 6.

6.5. The Effectiveness of the Weighted Occupancy Upper Bounds

In Section 4.3, we extend occupancy to weighted occupancy and propose the correspond-
ing efficient and tightest upper bounds for weighted occupancy. To show the effective-
ness of the proposed upper bounds, we extend DOFRA and BIDE to DOFRA_W and
BIDE_W to mine the qualified patterns on weighted database. In order to get the corre-
sponding weighted sequential databases for Gazelle, we take a similar method in Tseng
et al. [2013], Wu et al. [2012], and Liu and Qu [2012] and generate the weights for items
randomly ranging from 1 to 100. Figure 11(a) and 11(b) demonstrate the number of
searched nodes and running time between DOFRA_W and BIDE_W on dataset Gazelle
(with weights) for support thresholds varying from 0.0002 to 0.0006.We can see that
DOFRA_W always searches less nodes and runs much faster than BIDE_W. For exam-
ple, at support 0.0002, DOFRA_W is more than 6 times faster than BIDE_W while it
only searches about 4.9% nodes of those searched by BIDE_W.

7. RELATED WORK

Frequent pattern mining [Agrawal et al. 1993] is a fundamental research problem in
data mining with many broad applications, such as association-rule-based classifica-
tion [She et al. 2003] and clustering [Aggarwal et al. 2007]. There is a great amount of
work that studies efficient mining of frequent patterns [Pasquier et al. 1999; Han et al.
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2000a, 2000b; Burdick et al. 2001; Zaki 2001; Ayres et al. 2002; Gouda and Zaki 2005; Lu
et al. 2011; Kam et al. 2013; Cai et al. 2014; Chen and Chen 2014; Fournier-Viger et al.
2014; Lam et al. 2014; Wu et al. 2014] and we refer to [Han et al. 2007] as a recent sur-
vey on this field. These algorithms can be classified into mining frequent patterns [Han
et al. 2000a; Pei et al. 2001], frequent closed patterns [Pasquier et al. 1999; Wang and
Han 2004] and frequent maximal patterns [Burdick et al. 2001; Luo and Chung 2005].
To reduce the number of frequent patterns, some interestingness measures and con-
straints are proposed [Mannila and Toivonen 1997; Garofalakis et al. 1999; Pei et al.
2001; Bonchi and Lucchese 2004; Gade et al. 2004; Xiong et al. 2006; Pei et al. 2007; Li
et al. 2012] along with algorithms incorporating them for efficient pattern mining.

The concept of occupancy proposed in this article can be viewed as a new interest-
ingness measure and constraint. It can be seen as the relative size of a pattern to its
supporting transactions (sequences) rather than the absolute size of it, and might be
more meaningful in many applications. With the concept of occupancy, we then formu-
late the problem of mining top-k qualified patterns which maximize the weighted sum
of support and occupancy.

One work very similar to the spirits of ours is [Wang et al. 2005], in which Wang
et al. formulated the problem of finding the top-k frequent patterns with their sizes
no smaller than a threshold. The main difference between our work and theirs can
be summarized into two facets. First, Wang et al. [2005] used the absolute size of a
pattern as a constraint, while we use the measure occupancy, namely the relative size of
a pattern to its supporting transactions (sequences). As argued before, in many cases
occupancy might be a more reasonable constraint. In addition, since occupancy is a
normalized value, it also makes the tuning easier. Second, Wang et al. [2005] tried to
find the top-k frequent closed pattern, so frequency was used as the quality measure.
In our work, we define quality as the weighted sum of support and occupancy, which
might be more appropriate.

Similar to Geerts et al. [2004] and Gade et al. [2004], we also use a branch-and-bound
algorithm by exploiting anti-monotonic constraints to reduce the search space. How-
ever, Geerts et al. [2004] and Gade et al. [2004] proposed to maximize the area or tile
(product of pattern size and its frequency) while the proposed occupancy is used to mea-
sure the completeness of a pattern in its supporting sequences (or transactions). The
detailed upper bounds for area and occupancy are very different. Recent works [Cerf
et al. 2009; Soulet and Crémilleux 2009; Soulet et al. 2011] have also proposed methods
to deal with complex constraints constructed from primitives. In those works, the prim-
itives are required to be monotonic/anti-monotonic/convex, none of which is a property
of occupancy. But it might be an interesting work to extend these frameworks to handle
occupancy properly.

Some works formulated constraints [Bonchi and Lucchese 2007; Guns et al. 2011]
in a more general framework. To be specific, Bonchi and Lucchese [2007] proposed
a general and effective framework named ExAMinerGEN by exploiting the proper-
ties of constraints with anti-monotonic, monotonic, succinct, convertible, and loose
anti-monotonic, comprehensively. [Guns et al. 2011] used constraint programming for
solving itemset mining problems in a declarative way and they incorporated some
well-known constraints like monotonic, anti-monotonic, convertible in the constraint
programming system. Different from many other constraints, occupancy is not anti-
monotonic, monotonic, succinct, convertible, and loose anti-monotonic, thus, the previ-
ous general frameworks cannot be leveraged for our problems.

8. CONCLUDING REMARKS

Motivated by some real-world pattern recommendation applications, in this article we
introduced a new interesting pattern measure occupancy to measure the completeness
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of a pattern in its supporting transactions or sequences. Based on the definition of occu-
pancy, we then formulated the problem of mining top-k qualified patterns. To tackle this
problem, we explored the upper bound properties on occupancy and propose an efficient
algorithm DOFRA that injects these properties deeply into the search process. Specif-
ically, we proposed two upper bounds for arithmetic occupancy, in which the first one
is more efficient and the second one is theoretically proved to be tightest with certain
input constraints. Also, we showed the technique that achieves the balance between
the two upper bounds. Moreover, we also showed that these techniques can be applied
when we consider the weights of items in calculating the pattern occupancy. In addi-
tion, DOFRA can be further enhanced by exploiting the properties of closed patterns
since the top qualified pattern must be closed. Finally, we showed the effectiveness of
occupancy in the two real-world applications, namely the print-area recommendation
for Web pages and the travel-landscape recommendation. And, we also systematically
evaluated DOFRA on real and synthetic data sets and the results demonstrated that
DOFRA significantly outperforms the baseline method in terms of efficiency.

In the future, we would like to extend occupancy and exploit some novel applications
based on multiple-itemset sequences. Note that the commonality of the proposed ap-
plications about print-area recommendation and travel-landscape recommendation is
that the items in each transaction or sequence work as a whole for a task. Thus, it may
be interesting to apply occupancy to some traditional frequent pattern mining applica-
tions [Han et al. 2007] (e.g., drug design, genome analysis, market basket analysis, and
click stream analysis), in which the items in each transaction or sequence work as a
whole for a task. In addition, it may be interesting to exploit occupancy-based frequent
patterns for pattern-based classification [She et al. 2003] and clustering [Aggarwal
et al. 2007].
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